
4.2 The basic system of types 103

well-formed predication: John wanted to bank his check that very day or Mary
wanted to bank the airplane.

4.2 The basic system of types

Let us begin by examining simple, functional, and disjunctive types, as well as
the types that carry presuppositions. Thus, we have

• Simple or Primitive Types: e, t, physical object, etc.
• Presuppositional Type: Π, another base type that carries the type presup-

positions of terms.
• Disjunctive Types: If σ, τ, and ρ are types, σ
 ρ and τ
 ρ, then (σ∨ τ) is

a type.
• Functional Types: If σ and τ are types, then so is (σ⇒ τ).
• Quantificational Types: If σ is a simple type, and τ is any expression de-

noting a type and x is a variable ranging over types, then ∃x
 σ τ is a type.8

To illustrate, a term t is of this quantificational type if there is a subtype x of
σ such that t is of type τ[x].

The set of simple types, ST, forms the core of the system. It contains the basic
types countenanced by Montague Grammar, e, the general type of entities, and
t, the type of propositions, along with a finite set of subtypes of e and a count-
able set of subtypes of t. Another distinguished subtype is ⊥, the absurd type.
When there is no type in the type hierarchy γ such that α
 γ and β
 γ, α ∨ β
represents a disjunctive object that is the internal semantics of an accidentally
polysemous term that must be resolved to assign the term a determinate type.
Functional types represent properties. ST comes with the subtyping relation
,
which forms a semi-lattice over ST with ⊥ at the base.9

Using
 on the simple types, we define a greatest lower bound operation �
for elements of ST.

Definition 2 Greatest Lower Bound: α � α′ = β iff β
 α and β
 α′ and
there is no γ � β such that β � γ and γ
 α and γ
 α′.

� has the usual properties—e.g., idempotence, commutativity, and α
 β

iff α � β = α. TCL captures incompatibility between types in terms of their

8 x is, I realize, close to an individual level variable x. I strived for typographic consistency
making all type formulas in small caps. Hopefully this will not cause too much confusion.

9 As we will see, the subtyping relation as defined in the next section will entail that � is not the
supremum of the lattice. In fact � is not a type. Note that the fact that � is not a type in the
hierarchy does not stop us from using the tautology � in logical forms. These are quite
different objects.

104 Type Composition Logic

common join, ⊥. We can also define a dual to greatest lower bound, least upper
bound, or �: α � β = γ iff γ is the least general type in the hierarchy such that
α � γ and β � γ = γ. Note that � may not be always defined, since there may
be no type that is the least upper bound of arbitrary types α and β

4.2.1 Subtyping

In the previous chapter, we saw that the standard set theoretic model of types
fails to provide a coherent notion of subtyping for functional types, once we
admit a rich set of subtypes of the type of entities e. To summarize the difficulty,
recall that according to set theory, the set of physical properties or functions
of type p ⇒ t, that is, the set of all functions from objects of physical object
type to propositions, and the set of first-order properties or functions of type
e⇒ t (the set of all functions from entities to propositions) are disjoint, even
though p
 e in the lattice of simple types and even though every function in p
⇒ t is a subfunction of some function in e⇒ t. There is no coherent notion of
subtyping for higher-order types, where subtype is understood as subset, once
we admit multiple subtypes of e.

Type theory and the categorial models that I develop below provide a coher-
ent notion of subtyping for all types, in the sense that, together with the rules
of the simple, typed λ calculus, they generate a consistent logic or system of
proof. We need such a notion of subtyping to specify an appropriate rule of ap-
plication for β reduction: roughly one can apply a λ term λxφ to a term t if the
type of t is a subtype of the type of x. I will specify subtying using a restricted,
intuitionistic notion of deduction or proof for types, Δ.

• From subtyping to logic:

α
ST β

α Δ β

In particular, the model will verify:

Fact 1 Subtyping for functional types:

α
 α′ β
 β′

(α′ ⇒ β)
 (α⇒ β′)

Subtyping for functional types implies that e ⇒ t
 p ⇒ t. This makes
sense from a proof theoretic or computational point of view: if you have a
proof that given a proof of an entity, you have the proof of some proposition,
then you have a proof that given a proof of an entity of a particular type (say

4.2 The basic system of types 105

a physical object), you have a proof of a proposition. But we cannot derive
p ⇒ t
 e ⇒ t. This seems not to get us what we want for our type hierarchy,
since this implies, on the usual conception of first-order properties, that the
type of first-order properties is a subtype of the type of physical properties.10

In light of this, we must re-examine what we mean by a first-order property.
In a system with many subtypes of e, something is a first-order property just in
case it is a function from some subtype of e into the type of propositions. To
spell this out, our types must be defined in a second-order language for types.
The type of first-order property would thus not be what we naively take it to
be, namely e ⇒ t, but rather something that is implied by all function types
taking as inputs subtypes of e and returning a proposition. That is, the type of
a first-order property is:

(4.4) ∃x
 e (x⇒ t)

Anything from whose type declaration we can “prove” (4.4) is a first-order
property. To get anywhere, we must provide subtyping rules for existentially
quantified types. To get a sensible notion of subtyping as deduction, my sub-
typing rules follow the standard introduction and elimination rules for ∃. In
particular, where A is any type expression with an occurrence of β and B a type
expression where β does not occur, then

• Type theoretic ∃ introduction:

β
 α

A
 (∃x
 α A(X
β))

• Type theoretic ∃ “exploitation”:

β
 α, A
 B
(∃x
 α A(xβ))
 B

This enables us to get the right facts about first-order properties. In particular,
take the λ expression for black dog, whose course grained, denotational mean-
ing is a function from physical objects to propositions. The NP has the type
p ⇒ t, from which we can easily prove (4.4) using the ∃ introduction rule.
We can now combine black dog with a determiner whose type presupposition

10 This has disastrous consequences for the construction of logical form. Consider the rule of
application in the λ calculus which is like Modus Ponens—given a type α and a type α⇒ γ,
we get γ. Now take the case of a determiner which is something of type
(e⇒ t) ⇒ ((e⇒ t) ⇒ t) and it must combine with something of p⇒ t. We have by
assumption that e⇒ t p⇒ t. But we cannot now apply the determiner meaning to its
restrictor; application is not sound in this case, just as β α does not allow us to conclude:
β→ γ, α γ.

106 Type Composition Logic

on its first argument is that given by (4.4). We also have the general type of
physical properties, ∃x
 p (x ⇒ t), the general type of informational proper-
ties, ∃x
 i (x ⇒ t), and so on. The subtype hierarachy for these will be the
intuitive one.

(4.4) is the type presupposition of anything that intuitively takes a first-order
property as an argument—e.g., a determiner or DP. Any expression that ex-
presses a particular first-order property will satisfy this presupposition in the
sense of entailing it. Thus:

Fact 2 Any ordinary physical property (e.g., mass, shape, weight, color, etc.)
is a first-order property and any property of informational objects (e.g., the
property of being interesting, intelligible, etc.) is a first-order property.

In addition, applying a physical property to an object of non-physical type
is not defined (yields a type clash), and similarly applying a property defined
only on entities of abstract object type, i.e., of type i, to something of type p is
not defined.

4.3 Lexical entries and type presuppositions

In the simply typed lambda calculus, type checking is done automatically dur-
ing the moment of application. In the system developed here, however, a clash
between the type requirements of a predicate and the types of its arguments
may require adjustments to the predication relation and to logical form. Doing
this directly within the typed λ calculus led Asher and Pustejovsky (2006) to
unwanted complexity, and so I have chosen a different route, separating out
those operations involving type presupposition justification from the core of
the simply typed λ calculus. To pass presuppositions through properly from
predicates to arguments, I add a presuppositional parameter to each type as
de Groote (2006) and Pogodalla (2008) do to handle dynamic contexts.11

Each term has an extra argument for a presupposition element that can be
modified by the lexical item. For instance, the standard lexical semantic entry
for tree looks like this:

(4.5) λx: p tree(x)

11 Since I’m not trying to embed dynamic semantics in the λ calculus, I do not resort to their
continuation style semantics. They add two parameters of interpretation, but I shall add only
one. I use standard dynamic semantics for passing type values across discourse spans.
Nevertheless, everything I do here should be fully compatible with other approaches to
dynamic semantics.

